One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids
نویسندگان
چکیده
Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CN x nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell.
منابع مشابه
Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was ...
متن کاملNitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes
We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploit...
متن کاملComparison of two methods of carbon nanotube synthesis: CVD and supercritical process (A review)
A carbon nanotube (CNT) is a miniature cylindrical carbon structure that has hexagonalgraphite molecules attached at the edges. Nanotubes look like a powder or black soot, but they'reactually rolled-up sheets of graphene that form hollow strands with walls that are only one atom thick.Carbon nanotube has been one of the most actively explored materials in recent year(s) due to...
متن کاملModifying functionalized-carbon-nanotube capacity to enhance water-vapor adsorption capacity from nitrogen gas
The primary objective of this paper is to enhance the water-vapor-adsorption capacity of multiwall-carbon-nanotube (MWCNT) from nitrogen gas by grafting sulfonic acid groups and doping palladium nanoparticles into the adsorbent. MWCNT has been selected to be modified because of having homogeneous adsorption energy compared to silica gel. As a result, it is capable of creating isotherm having sh...
متن کاملCarbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina
Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...
متن کامل